Generalizations of the Aluthge transform of operators
نویسندگان
چکیده
منابع مشابه
Convergence of iterated Aluthge transform sequence for diagonalizable matrices II: λ-Aluthge transform
Let λ ∈ (0, 1) and let T be a r × r complex matrix with polar decomposition T = U |T |. Then, the λAluthge transform is defined by ∆λ (T ) = |T | U |T |. Let ∆nλ(T ) denote the n-times iterated Aluthge transform of T , n ∈ N. We prove that the sequence {∆nλ(T )}n∈N converges for every r × r diagonalizable matrix T . We show regularity results for the two parameter map (λ, T ) 7→ ∆∞λ (T ), and w...
متن کاملBrown Measure and Iterates of the Aluthge Transform for Some Operators Arising from Measurable Actions∗
We consider the Aluthge transform T̃ = |T |1/2U |T |1/2 of a Hilbert space operator T , where T = U |T | is the polar decomposition of T . We prove that the map T 7→ T̃ is continuous with respect to the norm topology and with respect to the ∗–SOT topology on bounded sets. We consider the special case in a tracial von Neumann algebra when U implements an automorphism of the von Neumann algebra gen...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2018
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1818465s